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SUMMARY

We develop a Godunov-type scheme for a non-conservative, unconditional hyperbolic multiphase model.
It involves a set of seven partial di�erential equations and has the ability to solve interface problems
between pure materials as well as compressible multiphase mixtures with two velocities and non-
equilibrium thermodynamics (two pressures, two temperatures, two densities, etc.). Its numerical reso-
lution poses several di�culties. The model possesses a large number of acoustic and convective waves
(seven waves) and it is not easy to upwind all these waves accurately and simply. Also, the system is
non-conservative, and the numerical approximations of the corresponding terms need to be provided. In
this paper, we focus on a method, based on a characteristic decomposition which solves these problems
in a simple way and with good accuracy. The robustness, accuracy and versatility of the method is
clearly demonstrated on several test problems with exact solutions. Copyright ? 2003 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Multiphase �ows are involved in a huge number of fundamental and industrial applications.
Multiphase mixtures may have several origins. Usually they are consequences of a physical
mixing process of several �uids or materials. But under some circumstances, they may come
from arti�cial smearing of contact discontinuities separating �uids of di�erent physical and
chemical properties.
We consider here the numerical resolution of a compressible multiphase �ow model, �rst

proposed by Baer and Nunziato [1] for detonation waves in granular explosives, and modi�ed
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in Reference [2] for the resolution of multiphase mixtures and interface problems between
pure compressible materials.
In this last reference, the goal was to use the same numerical method for the physical

problems involving two-phase mixtures with two velocities, as well as interface problems
with the single pressure and velocity. This aim was reached by using:

• An unconditional hyperbolic model for �uid mixtures, i.e. the system remains hyperbolic
for all admissible states.

• An accurate method for �ux computation as well as for the non-conservative terms.
• Pressure and velocity relaxation procedures.

This model and numerical solution procedures have been applied to several di�cult physical
problems like detonation waves in multiphase mixtures, multidimensional interfaces under
shock interaction, underwater explosions for example and cavitation in liquids [3].
However, this method has some drawbacks. The Riemann solver used in Reference [2]

and in Reference [3] was much too dissipative. It involved only two waves instead of seven.
Consequently not all the waves were upwinded, and the numerical solution was not accurate
enough, in particular for convective waves. Here we propose a simple way to account for
these waves in the solver.
In the literature several ways of solving the system from References [1, 2], which take

into account all waves, can be found. One of the common approaches is to neglect the non-
conservative terms in the system of governing equations. This is done e.g. in Reference [4],
where the authors give the following reasons to do so. First, they note that even without the
non-conservative terms the system remains consistent with the second law of thermodynamics.
Then, for the applications they consider, de�agration-to-detonation transition (DDT), these
terms do not play a signi�cant role in the process. Finally, they mention that the results
without non-conservative terms �t well to the experimental data. The resulting system could
be then expressed in divergence form and the Roe method is used for its solution.
Another method of solving the same type of model with neglected non-conservative terms

is proposed in Reference [5]. The advection equation for the volume fraction is written in
conservative form, and the characteristic decomposition method with the upwinding described
as follows is used to solve the system. Namely, the seven left eigenvectors are used to project
into the characteristic �elds, while only the �rst six entries of the seven right eigenvectors
are used to project back out of these �elds.
However, as we show in Section 3, neglecting the non-conservative terms could lead to

unphysical solutions, in particular when considering interface problems between pure materials.
The methodology which we follow in this work was introduced in Reference [2]. In contrast

to the methods mentioned above, we do not neglect non-conservative terms. This allows us to
preserve the conditions of uniformity for pressure and velocity by construction, see Section 3.
The numerical method which we employ here for the upwinding of the convective and

acoustic contributions of the �ux is due to Gallouet and Masella [6]. It is based on the local
resolution of the linearized Riemann problem. The numerical �ux is de�ned following the
Godunov scheme, as the physical �ux at the interface value of the solution of the Riemann
problem. Then the non-conservative terms are discretized following the lines of Saurel and
Abgrall [2]. This approach makes use of the fact that homogeneous states in pressure and
velocity should be preserved. Thus, for conservative systems, the scheme is conservative
and consistent without ful�lling Roe’s condition on the linearized Jacobian matrix. We do
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COMPRESSIBLE MULTIPHASE MIXTURES AND INTERFACES 111

not need to compute the Roe matrix in order to have a conservative method, which could be
quite costly and cumbersome for big systems or when using complicated equations of state.
This feature is especially useful for typical problems, arising in multiphase �ow mod-

elling, where we often have to complete the seven equation model by extra equations. These
could be the conservation equation for the number of particles per unit volume, which is
needed for the calculation of the particle diameter, drag force, etc. We can also consider the
micro–macro coupling e�ects like bubble pulsation, particle rotation, pore collapse, etc., see
References [7, 8]. Such type of system involves more equations, but remains hyperbolic and
has the same structure.
The paper is organized as follows. In Section 2, we brie�y review the mathematical model.

Section 3 is devoted to the discussion on the necessity of considering the non-conservative
terms. Sections 4–6 describe the numerical method, and Section 7 contains some numerical
examples.

2. PRESENTATION OF THE MODEL

Let us denote the gas and liquid phase with the subscripts g and l, respectively, and the
interface parameters with the subscript ‘int’. Let �k be the volume fractions, �k the material
densities, Pk the pressures, and Ek = ek + u2k =2 the speci�c total energies for k=g; l. The
parameters � and � determine the relaxation rates of velocities and pressures of the phases,
see Reference [2]. In Reference [2], the following de�nitions are proposed for the interface
pressure Pint and velocity Vint,

Pint = �gPg + �lPl
(1)

Vint = (�g�gug + �l�lul)=(�g�g + �l�l)

Other choices are possible according to the physical situation of interest. Then the governing
equations for the one-dimensional compressible two-phase �ow are [2]

@�g
@t
+ Vint

@�g
@x

= �(Pg − Pl)

@�g�g
@t

+
@�g�gug
@x

=0

@�g�gug
@t

+
@�g�gu2g + �gPg

@x
= Pint

@�g
@x

+ �(ul − ug)

@�g�gEg
@t

+
@�gug(�gEg + Pg)

@x
= PintVint

@�g
@x

+ �(ul − ug)Vint − �Pint(Pg − Pl) (2)

@�l�l
@t

+
@�l�lul
@x

=0

@�l�lul
@t

+
@�l�lu2l + �lPl

@x
=−Pint @�g@x − �(ul − ug)
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@�l�lEl
@t

+
@�lul(�lEl + Pl)

@x
=−PintVint @�g@x − �(ul − ug)Vint + �Pint(Pg − Pl)

Equations (2) are closed by two equations of state (EOS), here we use the sti�ened gas EOS,
and the saturation constraint for the volume fractions

Pk = (�k − 1)�kek − �k�k
�g + �l = 1

(3)

where �k and �k are constants, speci�c for each phase. For gas we take �g = 1:4, �g = 0,
for liquid �l = 4:4, �l = 6× 108 Pa. Any other convex equation of state may be used for the
thermodynamical closure of the model.
In order to investigate the mathematical structure of (2) it is convenient to rewrite it in

primitive variables,

@W
@t
+A

@W
@x

=S (4)

where

W=(�g; �g; ug; Pg; �l; ul; Pl) (5)

the vector S contains the non-di�erential source terms, and the matrix A is given as

A=




Vint 0 0 0 0 0 0
�g
�g
(ug − Vint) ug �g 0 0 0 0

Pg − Pint
�g�g

0 ug 1=�g 0 0 0

�gc2int;g
�g

(ug − Vint) 0 �gc2g ug 0 0 0

−�l
�l
(ul − Vint) 0 0 0 ul �l 0

−Pl − Pint
�l�l

0 0 0 0 ul 1=�l

−�lc
2
int; l

�l
(ul − Vint) 0 0 0 0 �lc2l ul




(6)

where

c2k =
pk=�2k − @ek=@�k |pk

@ek=@pk |�k
and c2int; k =

Pint=�2k − @ek=@�k |pk
@ek=@pk |�k

are the sound speeds for the phase k and for the phase k at the interface, respectively. A
straightforward computation gives us the following expressions for the seven eigenvalues

�1 = Vint

�2 = ug + cg; �3 = ug − cg; �4 = ug (7)

�5 = ul + cl; �6 = ul − cl; �7 = ul
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The corresponding right eigenvectors are

r1 =




�g�l�1�2
−�l�2(�g(�1 − c2int;g) + Pg − Pint)
�l�2(ug − Vint)(Pg − Pint − �gc2int;g)=�g
�l�2(�gc2int;g(ug − Vint)2 − c2g (Pg − Pint))
−�g�1(�l(c2int; l − �2)− Pl + Pint)
�g�1(ul − Vint)(−Pl + Pint + �lc2int; l)=�l
�g�1(−�lc2int; l(ul − Vint)2 + c2l (Pl − Pint))




(8)

r2 =




0

�g

cg

�gc2g

0

0

0




; r3 =




0

�g

−cg
�gc2g

0

0

0




; r4 =




0

1

0

0

0

0

0




(9)

r5 =




0

0

0

0

�l

cl

�lc2l




; r6 =




0

0

0

0

�l

−cl
�lc2l




; r7 =




0

0

0

0

1

0

0




(10)

where

�1 = c2g − (ug − Vint)2; �2 = c2l − (ul − Vint)2

Therefore, system (2) is hyperbolic, wherever the eigenvectors are linearly independent. Note
that system (2) is not strictly hyperbolic. Indeed, situations are possible, when some of the
eigenvalues of the gas phase can coincide with some of the liquid phase. Moreover, it is easy
to see that the eigenvectors (8)–(10) become linearly dependent in the points in the �ow,
where any one of conditions

�g = 0; �l = 0; �1 = 0; or �2 = 0

holds.
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In this work we do not consider the mass and convective heat transfer terms, which have
no importance for the design of the hyperbolic solver. The reader is referred to Reference [3]
for a description of such terms.
Note that the hyperbolicity of the model is only a consequence of the compressibility of

the �uids. One can consider other assumptions on the interface parameters (1) without losing
hyperbolicity.

3. WHY ARE THE NON-CONSERVATIVE TERMS IMPORTANT

We wish to show the importance of the non-conservative terms by using the following physical
principle due to Reference [9]: a �ow, uniform in velocity and pressure, must remain uniform
during its temporal evolution. In other words, under the uniformity conditions on velocity and
pressure, a contact discontinuity must be preserved.
Consider the mass and momentum conservation equations for one of the phases, we omit

the subscript g or l for brevity,

@��
@t

+
@��u
@x

=0
(11)

@��u
@t

+
@��u2 + �P

@x
= �Pint

@�
@x

Here the parameter �=1 for our model and �=0 for the models with neglected non-conserva-
tive terms [4, 5]. Let us show that with the second choice of � the system does not preserve
contact discontinuities.
Indeed, di�erentiating (11) out, we have

@��
@t

+ u
@��
@x

+ ��
@u
@x
=0

u
@��
@t

+ ��
@u
@t
+ u2

@��
@x

+ ��
@u2

@x
+ P

@�
@x
+ �

@P
@x
= �Pint

@�
@x

Using the assumption of the uniform velocity and pressure �eld and the estimates (1), we get

Pint =P; Vint = u

@��
@t

+ u
@��
@x

=0
(12)

@P
@x
=0

@u
@x
=0

(13)

This implies that

��
@u
@t
+ P

@�
@x
= �P

@�
@x
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It appears clearly that in order for the �ow to remain uniform with respect to velocity, i.e.

@u
@t
=0 (14)

it is necessary that

�=1

The assumption �=0 is valid only in the particular and very restrictive case of

@�
@x
=0

Consider now the energy equation, to check that the pressure evolution is zero too,

@��E
@t

+
@u(��E + �P)

@x
= �PintVint

@�
@x

Di�erentiating out and using the uniformity of velocity and pressure, we get

��
@E
@t
+ ��u

@E
@x
+ Pu

@�
@x
= �Pu

@�
@x

(15)

By (14) one has

@E
@t
=
@e
@t

so (15) becomes

��
de
dt
+ Pu

@�
@x
= �Pu

@�
@x

where d=dt= @=@t + u@=@x. Since e= e(P; �),

de
dt
=
@e
@P

∣∣∣∣
�

dP
dt
+
@e
@�

∣∣∣∣
P

d�
dt

and by (13),

de
dt
=
@e
@P

∣∣∣∣
�

@P
@t
+
@e
@�

∣∣∣∣
P

d�
dt

Using the advection equation for the volume fraction

@�
@t
+ u

@�
@x
=0

and the continuity equation (12) we get

@�
@t
+ u

@�
@x
=0
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116 N. ANDRIANOV, R. SAUREL AND G. WARNECKE

so that

d�
dt
=0

hold. The energy equation becomes

��
@e
@P

∣∣∣∣
�

@P
@t
+ Pu

@�
@x
= �Pu

@�
@x

which states again that

@P
@t
=0

only if

�=1

Thus, the �ow remains uniform with respect to the velocity and pressure only when the
non-conservative terms are considered.
Note that though in the case of a discontinuous �ow the classical derivatives used in

this section are not de�ned, we can get the preceding result in the sense of distributions.
See Schwartz [10] for the general theory of distributions. Indeed, assuming the velocity and
pressure �elds to be uniform, we can rewrite system (11) in a weak sense

〈	t; ��〉+ u〈	x; ��〉+
∫ +∞

−∞
	(x; 0)�(x; 0)�(x; 0) dx=0 (16)

u〈	t; ��〉+ u2〈	x; ��〉+ 〈	x; �P〉

−〈	x; �P�〉+ u
∫ +∞

−∞
	(x; 0)�(x; 0)�(x; 0) dx=0 (17)

where 	 ∈ C10 (R× [0;∞[) is a test function and

〈f; g〉=
∫ +∞

0

∫ +∞

−∞
fg dx dt

Multiplying (16) by u and subtracting the result from (17), one gets

〈	x; �P〉= 〈	x; �P�〉

Using again the uniformity of pressure and the fact that the equality must hold for every 	,
one necessarily gets that

�=1
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COMPRESSIBLE MULTIPHASE MIXTURES AND INTERFACES 117

4. NUMERICAL METHOD

Following Reference [2], we use the Strang splitting technique for the numerical solution
of (2):

Vn+1i =L�t=2s L�th L
�t=2
s Vni

where Vni is the vector of state variables on a mesh cell i and time tn, i.e.

Vni =(�g; �g�g; �g�gug; �g�gEg; �l�l; �l�lul; �l�lEl)

Lh is the operator of numerical solution of the hyperbolic part of system (2), and Ls is the
operator of integration of the source and relaxation terms. Here we focus on the hyperbolic
operator; the details on relaxation procedures may be found in Reference [11].

4.1. Hyperbolic operator

The hyperbolic part of system (2) can be rewritten in the following form:

@�g
@t
+ Vint

@�g
@x

=0 (18)

@U
@t
+
@f(U)
@x

=H
@�g
@x

(19)

where U is given by

Ui=(�g�g; �g�gug; �g�gEg; �l�l; �l�lul; �l�lEl)

Following the idea of Reference [2], we want to �nd a discretization of the non-conservative
part of (2), i.e. the transport equation for �g (18) and the term H@�g=@x in (19) in such a
way, that the numerical approximation to the system would preserve a contact discontinuity.
Let us write down the gas-related equations of (2), omitting the subscript g, the liquid part
could be considered analogously,

@�
@t
+ Vint

@�
@x
=0

@��
@t

+
@��u
@x

=0
(20)

@��u
@t

+
@��u2 + �P

@x
= Pint

@�
@x

@��E
@t

+
@�u(�E + P)

@x
= PintVint

@�
@x

Let us denote by f is the physical �ux function of (20), � some discrete form of @�=@x, which
is still to be determined, and U∗(Unj ;Unj+1) the value of U along the line x= xj+1=2 for the
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Figure 1. A typical Riemann problem, �i are given by (7).

Riemann problem with the states Unj ;Unj+1, see Figure 1. Imagine we have some Godunov-type
discretization of the last three equations, i.e.

Un+1i =Uni −
�t
�x
[f(U∗(Uni ;U

n
i+1))− f(U∗(Uni−1;U

n
i ))] + �tH� (21)

Rewriting scheme (21) componentwise, we get

(��)n+1i = (��)ni −
�t
�x
[(��u)∗i+1=2 − (��u)∗i−1=2]

(��u)n+1i = (��u)ni −
�t
�x
[(��u2 + �P)∗i+1=2 − (��u2 + �P)∗i−1=2] + �t(Pint)ni� (22)

(��E)n+1i = (��E)ni −
�t
�x
[(��uE + �Pu)∗i+1=2 − (��uE + �Pu)∗i−1=2] + �t(PintVint)ni�

where ∗ denotes the intermediate state.
Assume for the moment that the state U∗ has been determined. Then discretizations for �

and for the transport equation of � are obtained as follows. According to the principle due
to Reference [9], a �ow, uniform in pressure and velocity must remain uniform in the same
variables during its time evolution. In other words if we had constant pressure and velocity
everywhere in a �ow at the time level tn, then we will get the same pressure and velocity
at the time tn+1. Substituting constant pressures and velocities in the numerical scheme (22)
we get

uni = u
n+1
i = u∗i±1=2 =Vint = u=const

Pni =P
n+1
i =P∗

i±1=2 =Pint =P=const

The �rst two equations of (22) will be

(��)n+1i = (��)ni − u
�t
�x
[(��)∗i+1=2 − (��)∗i−1=2] (23)

(��)n+1i u= (��)ni u−
�t
�x
[(��)∗i+1=2u

2 + �∗i+1=2P − (��)∗i−1=2u2 − �∗i−1=2P] + �tP� (24)
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Multiplying (23) by u and subtracting the result from (24), we get the discretization for �,

�=
1
�x
(�∗i+1=2 − �∗i−1=2) (25)

Using the de�nition of E and (25) in the last equation of (22), and combining it with (23),
we get for internal energy

(��e)n+1i =(��e)ni −
�t
�x
[(��e)∗i+1=2u− (��e)∗i−1=2u]

Now using the equation of state (3) and the uniformity of pressure

�e=
P + ��
�− 1 =const

one gets

�n+1i = �ni − u
�t
�x

(�∗i+1=2 − �∗i−1=2)

which is the discretized form of (18).
For the non-uniform case u �= const, the Godunov-type scheme for system (18)–(19) reads

�n+1i = �ni − (Vint)ni
�t
�x
(�∗i+1=2 − �∗i−1=2)

(26)

Un+1i =Uni −
�t
�x
[f(U∗(Uni ;U

n
i+1))− f(U∗(Uni−1;U

n
i ))] + �tH�

where �=1=�x(�∗i+1=2−�∗i−1=2). In the following section we will specify U∗, the intermediate
value of the solution of the Riemann problem.

5. APPROXIMATE SOLUTION TO THE RIEMANN PROBLEM

Numerical scheme (26) requires the solution of the Riemann problem at every cell boundary
at each time step. In general, the exact solution of system (2) is unknown. The determination
of the Rankine–Hugoniot conditions and Riemann invariants is still an issue. Even if their
expressions were known, the exact solution would be too complicated for computational pur-
poses, so we have to use some approximate Riemann solver. The approach which we follow
here is that due to Reference [6]. In this section, we give the description of the original
method, and its use in the case of system (2).

5.1. Conservative systems

Consider a strictly hyperbolic system of m conservation laws

qt + g(q)x=0; q=(q1; : : : ; qm)T (27)
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with the initial data

q(x; 0)=

{
ql; x60

qr ; x¿0
(28)

Linearizing (27), one gets

qt + B( �q(ql; qr))qx=0 (29)

The state �q is chosen in such a way, that B has real eigenvalues, e.g.

�q=
ql + qr
2

For linear problem (29), the solution of the Riemann problem can be found exactly, see
Reference [12] for details. We introduce the characteristic variables

s=R−1q; s=(s1; : : : ; sm)T

where R is the matrix of the right eigenvectors of B. Then system (27) decouples into m
scalar advection equations

sit + �isix=0; i=1; : : : ; m

where �i are the eigenvalues of B. The initial data (28) in characteristic variables will be

s(x; 0)=




sl =R−1ql =



sl1
...
slm


 ; x60

sr =R−1qr =



sr1
...
srm


 ; x¿0

Thus one has

qr − ql =R (sr − sl)=R



sr1 − sl1
...

srm − slm




= (sr1 − sl1)r1 + · · ·+ (sr1 − sl1)rm=
m∑
i=1
biri

where bi= sri−sli and ri are the right eigenvectors of B. The intermediate state in the solution
of Riemann problem is given by

q∗= ql +
∑
�i¡0

biri (30)
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Then the Godunov-type scheme for conservation law (27) reads

qn+1i = qni −
�t
�x
[g(q∗(qni ; q

n
i+1))− g(q∗(qni−1; qni ))] (31)

The scheme is conservative and has a consistent numerical �ux. Provided we use entropy-
satisfying Riemann solutions q∗, the weak solutions obtained by this scheme satisfy the entropy
condition.
It is well known that the approximate solution of the Riemann problem, given by (30) could

be non-physical (rarefaction shocks). To avoid this, the approach of Harten and Hyman [13]
is used.

5.2. Non-conservative systems

Consider the Riemann problem for the hyperbolic part of system (2), written in the primitive
variable formulation (4)–(6),

@W
@t
+A

@W
@x

=0 (32)

The initial conditions are

W(x; 0)=

{
Wl; x60

Wr ; x¿0
(33)

Following [6], we calculate the Jacobian matrix A( �W) in the average state

�W=
Wl +Wr

2

The intermediate state in the solution of the Riemann problem (32)–(33) is

W∗=Wl +
∑
�i¡0

airi

where the eigenvalues �i and the corresponding eigenvectors ri of the matrix A( �W) are given
by (7), (8)–(10), and ai are the coe�cients of eigenvector decomposition of Wr −Wl,

Wr −Wl =
∑
�i

airi

For system (2) they are given by the following expressions:

a1 = �1=r11

a2 =
�3�gcg + �4 − a1(r13�gcg + r14)

2�gc2g

a3 =
−�3�gcg + �4 + a1(r13�gcg − r14)

2�gc2g

a4 = �2 − a1r12 − �g(a2 + a3)
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a5 =
�6�lcl + �7 − a1(r16�lcl + r17)

2�lc2l

a6 =
−�6�lcl + �7 + a1(r16�lcl − r17)

2�lc2l

a7 = �5 − a1r15 − �l(a5 + a6)

where r1k are the components of r1, �k is the kth component of Wr −Wl.
Recalculating W∗ into the conservative vector U∗, we fully determine the Godunov-type

scheme (26) for system (2).

6. EXTENSION TO THE SECOND ORDER

We use the MUSCL approach to achieve the second order, which consists of three steps,
namely

• Extrapolation: Given piecewise-constant values Wn
i , we obtain the linearly extrapolated

values

W+
i−1=2 =W

n
i − 1

2 ��i; W−
i+1=2 =W

n
i +

1
2 ��i

The essential issue is that this step is performed in primitive variables; this ensures
preservation of uniformity of pressure and velocity. The limited slopes ��i are taken
equal to

��i=

{
max[0;min(
�i−1=2;�i+1=2);min(�i−1=2; 
�i+1=2)]; �i+1=2¿0

min[0;max(
�i−1=2;�i+1=2);max(�i−1=2; 
�i+1=2)]; �i+1=2¡0

where

�i−1=2 =Wn
i −Wn

i−1; �i+1=2 =Wn
i+1 −Wn

i

In particular, 
=1 corresponds to the minmod limiter, 
=2 to the superbee limiter.
• Evolution: We evolve the values of W±

i∓1=2 according to

�W+
i−1=2 =W

+
i−1=2 −

�t
2�x

A(Wi)(W−
i+1=2 −W+

i−1=2)

�W−
i+1=2 =W

−
i+1=2 −

�t
2�x

A(Wi)(W−
i+1=2 −W+

i−1=2)

• The Riemann problem: We rewrite the vectors �W±
j±1=2 in conservative variables, solve the

Riemann problems with piecewise constant data ( �U−
j+1=2; �U

+
j+1=2) and get the intermediate

states U∗
j+1=2.
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Then the numerical scheme (second order in space and time) reads

�n+1i = �ni − (Vint)ni
�t
�x
( ��∗i+1=2 − ��∗i−1=2)

Un+1i =Ui − �t
�x
[f(U∗( �U−

i+1=2; �U
+
i+1=2))− f(U∗( �U−

i−1=2; �U
+
i−1=2))] + �tH�

where �=1=�x( ��∗i+1=2 − ��∗i−1=2).

7. NUMERICAL EXAMPLES

To illustrate the properties of the new scheme we have chosen essentially the same test
problems as in Reference [2]. Each problem was solved with the new scheme and with
the original method of Reference [2]. In what follows, the new scheme will be referred to
as VFRoe, stands for Volumes Finis Roe in French, notion taken from Reference [6]. The
original method of Reference [2] will be referred to as HLL due to the Harten–Lax–van Leer
numerical �ux function used there. The calculations were made with the second-order accurate
scheme using a CFL number of 0.9. The numerical results were then compared with the exact
solution for the �rst two problems and with the experimental data for the third problem.

7.1. Water–air shock tube

We consider the shock tube �lled with liquid water under high pressure at the left, and with
the gas (air) at the right. Each �uid is governed by the sti�ened gas EOS

Pk =(�k − 1)�kek − �k�k ; k=g; l

with the following parameters:

Liquid Gas

�l = 4:4 �g = 1:4
�l = 6× 108 �g = 0

The initial conditions for system (2) are

Left: x60:7 Right: x¿0:7

�l = 1000 kg=m3 �g = 50 kg=m3

Pl = 109 Pa Pg = 106 Pa

ul = 0 m=s ug = 0 m=s

�l = 1 �g = 1

(34)

Note that at the both sides of the interface system (2) reduces to the Euler equations for liquid
and gas. The solution of Riemann problem (2)–(34) is schematically depicted in Figure 2.
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Figure 2. The Riemann problem (2)–(34). The interface x=t=Vint separates the phases,
liquid at the left and gas at the right.

Using that

P∗
g =P

∗
l ; u∗g = u

∗
l

we can get the exact solution to the Riemann problem.
To solve it numerically, we allow the presence of a negligible small amount of gas, e.g.

�g = 10−8, at the left of the shock tube, and a small amount of water at the right. Thus the
initial data will be as follows:

Left: x60:7 Right: x¿0:7

�g = 50 kg=m3 �g = 50 kg=m3

�l = 1000 kg=m3 �l = 1000 kg=m3

Pg =Pl = 109 Pa Pg =Pl = 106 Pa

ug = ul = 0 m=s ug = ul = 0 m=s

�g = 10−8 �l = 10−8

(35)

For this problem, we use both the pressure and velocity relaxation procedures. We con-
sider the exact solution of (2)–(34) to be a reference solution for the numerical solution of
(2)–(35), having in mind that we have the exact solution for the liquid at the left, and for
the gas at the right.
The comparison of the numerical results for the VFRoe and HLL solvers with the exact

solution at time t=2:2e − 4 is presented in Figures 3–5. As expected, the VFRoe solver
gives a much sharper resolution of discontinuities compared to HLL. The numerical results,
obtained with the VFRoe scheme over 100 mesh cells are comparable to the results of HLL
over 300 mesh cells. The calculations with 1000 mesh cells show that the shock speeds are
also correctly computed.
In Figure 3, some peaks are visible in the gas parameters at the left of the interface, and in

the liquid parameters to the right of it. We have observed this behaviour of the solution with
the both HLL and VFRoe schemes. As mentioned before, it is not possible to fully compare
these numerical results for initial data (35) with the reference solution to system (2) with
initial data (34).
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Figure 3. Water–air shock tube, material densities and energies of the phases.

Figure 4. Water–air shock tube, mixture density and pressure.

In Figures 4–5 the distributions of the mixture density

�mix = �g�g + �l�l

the relaxed pressures and velocities

P=Pg =Pl

u= ug = ul

and gas volume fraction �g are presented. The reference solution for the gas volume fraction is
obtained as follows. Knowing the interface velocity Vint from the solution of Riemann problem
(2) with initial data (34), we �nd the displacement of the interface �S over the time �t as

�S=Vint �t
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Figure 5. Water–air shock tube, velocities and gas volume fraction.

Inflow

Outflow

Initial conditions Intermediate state Steady state

Figure 6. Water faucet problem.

In some extreme situations with very large ratios of initial pressures and densities, the
VFRoe solver fails to preserve positivity of density of pressure in the intermediate state of
the Riemann problem. The problem of positivity preservation of the VFRoe solver is an
interesting question and will be the subject of future research.

7.2. Water faucet problem

This test, which is due to Reference [14], consists of a vertical tube 12 m in length, which
contains a liquid (water) column, surrounded by gas (air). At the top, the volume fractions and
the liquid velocity are given, and the gas velocity is zero. The bottom is open to atmospheric
conditions. Under the action of gravity, a narrowing of the liquid jet takes place. Several
stages of the process are depicted in Figure 6.
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The initial conditions are as follows:

Liquid Gas

�l = 1000 kg=m3 �g = 1 kg=m3

Pl = 105 Pa Pg = 105 Pa

ul = 10 m=s ug = 0 m=s

�l = 0:8 �g = 0:2

(36)

The boundary conditions are

Liquid Gas

ul = 10 m=s ug = 0 m=s

Top (in�ow)

�l = 0:8 �g = 0:2

Pl = 105 Pa Pg = 105 Pa

Bottom (out�ow)

�l; �g are extrapolated

(37)

other �ow variables are found by the solution of the boundary Riemann problem for the
phases at the top and at the bottom of the tube.
Under the assumption that the liquid is incompressible and the pressure variation in gas is

zero, one can get the exact solution for the evolution of the gas volume fraction

�g(x; t)=



1− (1− �0g)u0l√

2gx + (u0l )2
; x6u0l t +

gt2

2

0:2 otherwise

where �0g is the initial gas volume fraction, u
0
l the initial liquid velocity, g the gravity accel-

eration, see e.g. Reference [15]. For the numerical solution of the problem, the parameters of
the sti�ened gas EOS were taken as follows:

Liquid Gas

�l = 4:4 �g = 1:4

�l = 6× 106 �g = 0

For this problem, the velocity relaxation was not used, because the phases have two distinct
velocities. The comparison of the numerical results with the exact solution is presented in
Figure 7.
Again, the VFRoe solver gives better results compared to that of HLL solver. The resolution

of the discontinuity in gas volume fraction is not perfect, which is due to the following reasons.
The sound speed in the liquid is much higher than that of the gas, so one has to choose very
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Figure 7. Water faucet problem: gas volume fraction at t=0:4.

Table I. Thermodynamic constants for selected materials.

� �, 109 Pa

Copper 4.22 32.32
Zinc 4.17 15.71
Epoxy 2.94 3.21
Spinel 1.62 141.45

small time steps in order to satisfy the CFL condition, which leads to numerical inaccuracies.
Secondly, the gas pressure is not always constant along the tube, which causes a gas �ow in
the negative direction and thus smearing of the interface.

7.3. Mixture Hugoniot test problem

7.3.1. Description. Consider a two-phase mixture, where each component k is governed by
the sti�ened gas EOS

Pk =(�k − 1)�kek − �k�k ; k=1; 2

In this test, we are interested in mixtures of solid materials, which can be considered as
compressible under high pressures. One can determine the constants �k ; �k for some materials
from Reference [16]. The corresponding values are summarized in Table I.
Consider a shock wave propagating in two-phase mixtures of copper=zinc (brass) and

epoxy=spinel. Using the constants from Table I, we can calculate the shock speed in the
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Table II. Thermodynamic constants for selected mixtures.

� 	, 109 Pa

Brass (copper/zinc) 4.20 27.49
Epoxy/Spinel 2.04 77.85

mixtures of solids with the two-phase �ow model and the numerical method described pre-
viously. This shock speed can also be estimated from the Rankine–Hugoniot conditions of
the mixture Euler equations closed by an appropriate equation of state. Such type of mixture
equation of state is described in Reference [8]. Both numerical results are compared with the
experimental data of Reference [16].

7.3.2. Two-phase-�ow model. There are no classical Rankine–Hugoniot conditions for
system (2), so we cannot �nd the shock speed analytically. The approach we use here is
straightforward. We calculate the shock speed as the ratio of the biggest (and the only one,
in case of a single shock wave) pressure gradient displacement over the time interval.

7.3.3. Euler equations coupled with the mixture EOS. For the Euler equations, we can �nd
the shock speed analytically from the Rankine–Hugoniot jump relations. To close the system,
we use the mixture EOS due to Reference [8]. It is based on the conservation of the energy
and mass of the mixture, and on the equality of pressures between phases. It reads

P=(�− 1)�e − �	

where � is the mixture density, e the mixture internal energy

�=1 +
1

�1=(�1 − 1) + �2=(�2 − 1) ; 	=
�− 1
�

(
�1

�1�1
�1 − 1 + �2

�2�2
�2 − 1

)

and �k , �k , �k are the volume fractions and the thermodynamic constants for the phase k=1; 2.
The constants �, 	 for the mixtures copper=zinc and epoxy=spinel are given in Table II.

7.3.4. Numerical results. Consider the two sets of initial data for the copper=zinc mixture
(brass)

Copper Zinc

�1 = 8924 kg=m3 �2 = 7139 kg=m3

P1 = 105 Pa P2 = 105 Pa

u1 = 0 m=s u2 = 0 m=s

�1 = 0:71 �2 = 1− �1
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Figure 8. Mixture Hugoniot problem.

and the epoxy=spinel mixture

Epoxy Spinel

�1 = 1185 kg=m3 �2 = 3622 kg=m3

P1 = 105 Pa P2 = 105 Pa

u1 = 0 m=s u2 = 0 m=s

�1 = 0:595 �2 = 1− �1
We use a piston boundary condition on the left side to initiate the shock wave. The comparison
of the calculated shock speed Us as a function of piston velocity Up with the experimental
data of Reference [16] is presented in Figure 8.
The two-phase �ow model gives a very good prediction of the shock speed even on 100

mesh cells compared to the Euler equations for the mixture. Note that the two-phase model
does not need any empirically determined parameter. Only the pure material equations of state
are used, in conjunction with the hyperbolic solver and relaxation procedures. The results of
the VFRoe and HLL solvers do not di�er qualitatively on 100 mesh cells. They both show
some slight deviations from the experimental results. This is due to the non-accurate way
of determining the shock speed for the two-phase �ow model. Nevertheless, the results with
1000 cells show an excellent agreement with the experimental data.

8. CONCLUSIONS

In this study, we propose a simple method for compressible two-phase �ows. The di�usive
Riemann solver used in Reference [2] has been replaced with a more accurate one. The cor-
responding discretizations of the non-conservative terms have been developed in the absence
of pressure or velocity jumps at the volume fraction discontinuity. The comparison of numer-
ical results shows better resolution of the �ow discontinuities, obtained by the new scheme.
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The model and method are validated over several test problems with exact or experimental
solutions.
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